Articles

Crystalline Structure and Surface Reactivity

+ See all authors and affiliations

Science  03 Aug 1962:
Vol. 137, Issue 3527, pp. 311-322
DOI: 10.1126/science.137.3527.311

Abstract

The role of crystalline structure in the surface reactivity of predominantly covalent materials has been examined in terms of chemical bonding concepts. In this context a solid surface can be viewed as a giant lattice defect characterized by dangling bonds. Although it is difficult, at the present stage of development of the quantum mechanical approach to surfaces, to define precisely the perturbations resulting from the abrupt termination of the lattice at the surface, a host of experimental observations can be understood by assuming displacements of surface atoms and distortions of bonding configurations in accordance with simple chemical bonding principles.

A purely atomistic approach has been shown to account not only for the chemical behavior but also for certain structural and electrical characteristics of the surfaces considered. A number of phenomena, such as crystal growth and the behavior of certain lattice defects (for example, dislocations), are intimately related to the presence of dangling bonds and the associated distortions of the lattice at the surface (32).

Related Content