Cosmic Electromagnetic Radiation

See allHide authors and affiliations

Science  18 Sep 1964:
Vol. 145, Issue 3638, pp. 1263-1271
DOI: 10.1126/science.145.3638.1263


Within a few decades astronomy has extended the compass of its observations from the visible spectrum downward to radio waves and upward to the highest energies known to science. The major new accomplishments are in the radio and x-ray bands, and in the associated study of cosmic ray electrons. Synchrotron radiation is known to be a mechanism for radio signals; discrete x-ray sources have been found; the intensity and the charge ratio of galactic electrons are under study. Experimental results at energies above the x-ray region are less firm. The sun surely emits gamma rays at energies of about 1 Mev during flare activity, and instruments in deep space have probably recorded the general galactic glow of similar photons. Upper limits for fluxes have been set at 100 Mev and beyond.

To some extent the physical processes which give rise to the extraterrestrial radiation are familiar to workers in the terrestrial laboratory. Synchrotron radiation is an example; the bremsstrahlung of electrons, the production of neutral pions in p-p collisions, and the annihilation of electron and nucleon pairs are others. Some proposed mechanisms are, and perhaps always will be, purely speculative in the sense that they are not directly observable in the laboratory. The inverse Compton effect, possibly one of the sources of a metagalactic sky glow of hard photons, is in this class. There is little chance that spontaneous creation of matter, even if it occurs in nature, can be observed on a terrestrial scale. And the extreme physical conditions proposed for neutron stars are beyond our ability to reproduce. Only through interpretation of astronomical data can we test the validity of these ideas. The many pictures of the universe given by the vast electromagnetic spectrum are essential to the synthesis of our concepts.