Airborne Geophysical Study in the Pensacola Mountains of Antarctica

See allHide authors and affiliations

Science  16 Sep 1966:
Vol. 153, Issue 3742, pp. 1373-1376
DOI: 10.1126/science.153.3742.1373


A seismic reflection, gravity, and aeromagnetic reconnaissance was made in the Pensacola Mountains, Antarctica, during the 1965-66 austral summer. Prominent ice streams located between the Neptune and Patuxent Ranges and east of the Forrestal Range overlie channels in the rock surface 2000 meters below sea level which are probably of glacial origin. Seismic reflections show that the Filchner Ice Shelf is 1270 meters thick near its southern margin. Along the boundary between West and East Antarctica, Bouguer anomalies decrease from +60 milligals in West Antarctica to —80 milligals in East Antarctica. An abrupt change in crustal structure across this boundary is required to explainl the 2 milligals per kilometer gradient. This may indicate a fault extending through the crust into the mantle. Aeromagnetic profiles delineate anomalies up to 1800 γ associated with the basic stratiform intrusion which comprises the Dufek and Forrestal ranges. A probable minimum area of 9500 square kilometers is calculated for the intrusive body on the basis of the magnetic anomalies, making it one of the largest bodies of its type. The extension of this magnetic anominaly across a fault forming the north border of the Pensacola Mountains probably precludes transcurrent movement.