Pleistocene Changes in the Fauna and Flora of South America

See allHide authors and affiliations

Science  27 Aug 1971:
Vol. 173, Issue 3999, pp. 771-780
DOI: 10.1126/science.173.3999.771


In recent years, the view that Pleistocene climatic events played a major role in the evolution of the biotas of southern, primarily tropical continents has begun to displace the previously held conviction that these areas remained relatively stable during the Quaternary. Studies of speciation patterns of high Andean plant and avian taxa (7-14) have led to the conclusion that Pleistocene climatic events were the factors that ultimately shaped the patterns now observed in the paramo-puna and the related Patagonian flora and fauna. The final uplift of the Andes at the end of the Tertiary automatically limits the age of the high Andean habitats and their biotas to the Quaternary. Within this period, the number of ecological fluctuations caused by the glaciations could easily have provided the mechanism behind the patterns now present in these habitats (Appendix, 1; Figs. 1 and 2; Table 1). In glacial periods, when vegetation belts, were lowered, organisms in the paramo-puna habitat were allowed to expand their ranges. In interglacial periods, these taxa were isolated on disjunct peaks, where differentiation could occur. At times of ice expansion, glacial tongues and lakes provided local barriers to gene exchange, whereas in warm, interglacial times, dry river valleys were a major deterrent to the interbreeding of populations on different mountains (Fig. 2; Table 2). A preliminary analysis of about 10 to 12 percent of the total South American avifauna (14), subsequent to the study of the high Andean biota, suggested that the birds of all the major habitats of the continent possess, with about equal frequency, similar stages of speciation. This correspondence in levels of evolution indicated that the avifauna of vegetation zones which were thought to have been more stable (for example, tropical rainforests) are as actively speciating as are those of the more recent paramo-puna habitats. More intensive work on lowland tropical taxa (16, 19-21) and recent work on montane forest elements (40) now justify the conclusion that the floras and faunas of these areas were also greatly affected by Pleistocene climatic shifts. In the broad region of South America that lies within the tropics, a series of humid-arid cycles (Appendix, 6, 8-10) drastically and repeatedly altered vegetation patterns during the Quaternary. Both montane and lowland rainforests were fragmented during dry periods and were able to reexpand during humid phases. Speciation of forest elements was initiated—and sometimes completed—in isolated patches of the fragmented forest. Secondary contact, with hybridization or reunition of populations that did not become reproductively isolated, occurred in periods of reexpansion. These biological data, combined with supportive geological evidence (Appendix, 1-11), show that climatic events during the last million or so years have affected the biota of South America as much as the Pleistocene glacial changes affected the biotas of Eurasia and North America. Since most of South America lies within tropical latitudes, it is suggested here that part of the diversity of species in the tropical areas of this continent is due to two historical factors: the lack of wholesale elimination of species (compared with northern and high latitudes), and ample opportunity for speciation in successive periods of ecological isolation. The apparent paradox of the wealth of species in the "stable tropics" is partially explained by the fact that the tropics have probably been quite unstable, from the point of view of their biotas, during the Pleistocene and perhaps part of the Tertiary.