Ecological Genetics and Natural Selection in Molluscs

See allHide authors and affiliations

Science  09 Nov 1973:
Vol. 182, Issue 4112, pp. 546-552
DOI: 10.1126/science.182.4112.546


Polymorphic snails of the genus Cepaea have been widely used for research in ecological genetics. Natural selection by selective predation is important in controlling morph frequencies in some populations of C. nemoralis in England. The importance of environmental selection in affecting other patterns of local genetic differentiation of population structure (area effects) is a matter of controversy. Some authors emphasize divergent evolution of whole gene pools between area effects, while others feel that climatic selection acting on individual loci is important.

Analysis of 500,000 C. nemoralis snails from throughout Europe shows that there is a strong positive association between gene frequencies at the shell color locus and mean summer temperature, but that no climatic correlations are obvious at other loci. Another species, C. vindobonensis, which has a much simpler system of polymorphism than does C. nemoralis, was investigated in Yugoslavia, in a region where there is known to be intense microclimatic differentiation because of the accumulation of cold air in frost hollows. There was a striking tendency for snails with lightly pigmented shell bands to be found in places with a warm microclimate. Physiological and behavioral experiments demonstrate that this is due primarily to differential energy absorption from sunshine by the different shell phenotypes. As in C. nemoralis, other C. vindobonensis phenotypes show no detectable association with the environment. It is possible that genes whose frequencies cannot be related to environmental selection may have evolved strong linkage interactions with other genes in the population's gene pool. Selection by the ecological environment and the genetic environment may therefore both be important in controlling the genetic structure of snail populations.