Articles

Episodic Strain Accumulation in Southern California

Science  12 Nov 1976:
Vol. 194, Issue 4266, pp. 691-695
DOI: 10.1126/science.194.4266.691

Abstract

Reexamination of horizontal geodetic data in the region of recently discovered aseismic uplift has demonstrated that equally unusual horizontal crustal deformation accompanied the development of the uplift. During this time interval compressive strains were oriented roughly normal to the San Andreas fault, suggesting that the uplift produced little shear strain accumulation across this fault. On the other hand, the orientation of the anomalous shear straining is consistent with strain accumulation across northdipping range-front thrusts like the San Fernando fault. Accordingly, the horizontal and vertical crustal deformation disclosed by geodetic observation is interpreted as a short epoch of rapid strain accumulation on these frontal faults. If this interpretation is correct, thrust-type earthquakes will eventually release the accumulated strains, but the geodetic data examined here cannot be used to estimate when these events might occur. However, observation of an unusual sequence of tilts prior to 1971 on a level line lying to the north of the magnitude 6.4 San Fernando earthquake offers some promise for precursor monitoring. The data are adequately explained by a simple model of up-dip aseismic slip propagation toward the 1971 epicentral region. These observations and the simple model that accounts for them suggest a conceptually straightforward monitoring scheme to search for similar uplift and tilt precursors within the uplifted region. Such premonitory effects could be detected by a combination of frequenlty repeated short (30 to 70 km in length) level line measurements, precise gravity traverses, and continuously recording gravimeters sited to the north of the active frontal thrust faults. Once identified, such precursors could be closely followed in space and time, and might then provide effective warnings of impending potentially destructive earth-quakes.

Related Content