Bone cancer from radium: canine dose response explains data for mice and humans

See allHide authors and affiliations

Science  04 Apr 1980:
Vol. 208, Issue 4439, pp. 61-64
DOI: 10.1126/science.7361106


Analysis of lifetime studies of 243 beagles with skeletal burdens of radium-226 shows that the distribution of bone cancers clusters about a linear function of the logarithms of radiation dose rate to the skeleton and time from exposure until death. Similar relations displaced by species-dependent response ratios also provide satisfactory descriptions of the reported data on deaths from primary bone cancers in people and mice exposed to radium-226. The median cumulative doses (or times) leading to death from bone tumors are 2.9 times larger for dogs than for mice and 3.6 times larger for people than for dogs. These response ratios are well correlated with the normal life expectancies. The cumulative radiation dose required to give significant risk of bone cancer is found to be much less at lower dose rates than at higher rates, but the time required for the tumors to be manifested is longer. At low dose rates, this time exceeds the normal life-span and appears as a practical threshold, which for bone cancer is estimated to occur at an average cumulative radiation dose to the skeleton of about 50 to 110 rads for the three species.