Abstract

The opioid peptide dynorphin is widely distributed in neuronal tissue of rats. By immunocytochemical methods, it was shown previously that dynorphin-like immunoreactivity is present in the posterior pituitary and the cells of the hypothalamic neurosecretory magnocellular nuclei which also are responsible for the synthesis of oxytocin, vasopressin, and their neurophysins. By using an affinity-purified antiserum to the non-enkephalin part of the dynorphin molecule it has now been demonstrated that dynorphin and vasopressin occur in the same hypothalamic cells of rats, whereas dynorphin and oxytocin occur in separate cells. Homozygous Brattleboro rats (deficient in vasopressin) have magnocellular neurons that contain dynorphin separate from oxytocin. Thus dynorphin and vasopressin, although they occur in the same cells, appear to be under separate genetic control and presumably arise from different precursors.