Spermidine requirement for cell proliferation in eukaryotic cells: structural specificity and quantitation

Science  04 Mar 1983:
Vol. 219, Issue 4588, pp. 1083-1085
DOI: 10.1126/science.6823570


Six structural homologs of spermidine and five of its precursor, putrescine, were studied for their ability to prevent cytostasis of cultured L1210 leukemia cells induced by alpha-difluoromethylornithine (DFMO), a specific inhibitor of putrescine biosynthesis. High-performance liquid chromatography and competition studies with spermidine indicated that the homologs, which vary in the length of the carbon chain separating the amines, penetrated the cells. The structural specificity of the spermidine carrier was defined. Three of the six spermidine homologs supported cell growth during a 48-hour incubation in the presence of DFMO, indicating that a two-carbon extension of spermidine structure was tolerated for biological function. Two of the five putrescine homologs supported growth after being converted by the cells to their respective spermidine homologs. The central nitrogen of spermidine appears to be essential for function since diamines of chain length comparable to that of spermidine did not prevent DFMO cytostasis. No more than 15 percent of the spermidine normally present in L1210 cells was required for cell proliferation in the presence of DFMO.