Formaldehyde damage to DNA and inhibition of DNA repair in human bronchial cells

See allHide authors and affiliations

Science  08 Apr 1983:
Vol. 220, Issue 4593, pp. 216-218
DOI: 10.1126/science.6828890


Cultured bronchial epithelial and fibroblastic cells from humans were used to study DNA damage and toxicity caused by formaldehyde. Formaldehyde caused the formation of cross-links between DNA and proteins, caused single-strand breaks in DNA, and inhibited the resealing of single-strand breaks produced by ionizing radiation. Formaldehyde also inhibited the unscheduled DNA synthesis that occurs after exposure of cells to ultraviolet irradiation or to benzo[a]pyrene diolexpoxide but at doses substantially higher than those required to inhibit the resealing of x-ray-induced single-strand breaks. Therefore, formaldehyde could exert its mutagenic and carcinogenic effects by both damaging DNA and inhibiting DNA repair.