Abstract

Studies on vertebrate and invertebrate species have established that, during development, axons have the ability to choose particular paths over others. The chemical basis of this pathfinding is not clear but biochemical differences between neurons have long been postulated to account for the specificity of neuronal connections. Such subtle molecular differences between different cells in a single tissue are difficult to study with standard biochemical techniques but hybridoma technology has offered a potential solution to this type of problem. This technique has made possible the production of monoclonal antibodies for identifying and characterizing a family of glycoproteins which are expressed on the surface of specific axon bundles during the development of the leech nervous system. The results show that groups of growing axons do indeed carry chemically distinct surface molecules.