Transition from B to Z DNA: contribution of internal fluctuations to the configurational entropy difference

See allHide authors and affiliations

Science  09 Aug 1985:
Vol. 229, Issue 4713, pp. 571-572
DOI: 10.1126/science.3839596


The internal motions of the double-stranded DNA oligomer (dCdG)3 (dC, deoxycytidylate; dG, deoxyguanylate) in the B and Z forms have been calculated in the harmonic approximation. A complete vibrational analysis has been made, and the resulting normal mode frequencies have been used to evaluate the vibrational entropy of B and Z DNA. The greater flexibility of the B DNA hexamer leads to an entropic stabilization relative to the stiffer Z DNA hexamer of 22 calories per mole per kelvin at 300 K. The calculated value is of the same order as that (21 to 27 calories per mole per kelvin) obtained from nuclear magnetic resonance measurements on the methylated duplexes (m5dCdG)3 and (dCdGm5dCdGdCdG). This result demonstrates the importance of internal motions, which have been neglected in earlier studies of the transition from B to Z DNA, in the stability of different nucleic acid conformers.