Articles

Production of 2-Keto-L-Gulonate, an Intermediate in L-Ascorbate Synthesis, by a Genetically Modffied Erwinia herbicola

See allHide authors and affiliations

Science  11 Oct 1985:
Vol. 230, Issue 4722, pp. 144-149
DOI: 10.1126/science.230.4722.144

Abstract

A new metabolic pathway has been created in the microorganism Erwinia herbicola that gives it the ability to produce 2-keto-L-gulonic acid, an important intermediate in the synthesis of L-ascorbic acid. Initially, a Corynebacterium enzyme that could stereoselectively reduce 2,5-diketo-D-gluconic acid to 2-keto-L-gulonic acid was identified and purified. DNA probes based on amino acid sequence information from 2,5-diketo-D-gluconic acid reductase were then used to isolate the gene for this enzyme from a Corynebacterium genomic library. The 2,5-diketo-D-gluconic acid reductase coding region was fused to the Escherichia coli trp promoter and a synthetic ribosome binding site and was then introduced into E. herbicola on a multicopy plasmid. Erwinia herbicola naturally produces 2,5-diketo-D-gluconic acid via glucose oxidation, and when recombinant cells expressing the plasmid-encoded reductase were grown in the presence of glucose, 2-keto-L-gulonic acid was made and released into the culture medium. The data demonstrate the feasibility of creating novel in vivo routes for the synthesis of important specialty chemicals by combining useful metabolic traits from diverse sources in a single organism.