The structure of Mengo virus, a representative member of the cardio picornaviruses, is substantially different from the structures of rhino- and polioviruses. The structure of Mengo virus was solved with the use of human rhinovirus 14 as an 8 A resolution structural approximation. Phase information was then extended to 3 A resolution by use of the icosahedral symmetry. This procedure gives promise that many other virus structures also can be determined without the use of the isomorphous replacement technique. Although the organization of the major capsid proteins VP1, VP2, and VP3 of Mengo virus is essentially the same as in rhino- and polioviruses, large insertions and deletions, mostly in VP1, radically alter the surface features. In particular, the putative receptor binding "canyon" of human rhinovirus 14 becomes a deep "pit" in Mengo virus because of polypeptide insertions in VP1 that fill part of the canyon. The minor capsid peptide, VP4, is completely internal in Mengo virus, but its association with the other capsid proteins is substantially different from that in rhino- or poliovirus. However, its carboxyl terminus is located at a position similar to that in human rhinovirus 14 and poliovirus, suggesting the same autocatalytic cleavage of VP0 to VP4 and VP2 takes place during assembly in all these picornaviruses.