Articles

The Large Crater Origin of SNC Meteorites

+ See all authors and affiliations

Science  14 Aug 1987:
Vol. 237, Issue 4816, pp. 738-743
DOI: 10.1126/science.237.4816.738

Abstract

A large body of evidence strongly suggests that the shergottite, nakhlite, and Chassigny (SNC) meteorites are from Mars. Various mechanisms for the ejection of large rocks at martian escape velocity (5 kilometers per second) have been investigated, but none has proved wholly satisfactory. This article examines a number of possible ejection and cosmic-ray exposure histories to determine which is most plausible. For each possible history, the Melosh spallation model is used to estimate the size of the crater required to produce ejecta fragments of the required size with velocities ≥5 kilometers per second and to produce a total mass of solid ejecta consistent with the observed mass flux of SNC meteorites. Estimates of crater production rates on Mars are then used to evaluate the probability that sufficiently large craters have formed during the available time. The results indicate that the SNC meteorites were probably ejected from a very large crater (> 100 kilometers in diameter) about 200 million years ago, and that cosmic-ray exposure of the recovered meteorites was initiated after collisional fragmentation of the original ejecta in space at much later times (0.5 to 10 million years ago).