Computer-aided molecular design

Science  23 Oct 1987:
Vol. 238, Issue 4826, pp. 486-491
DOI: 10.1126/science.3310236


Theoretical chemistry, as implemented on fast computers, is beginning to yield accurate predictions of the thermodynamic and kinetic properties of large molecular assemblies. In addition to providing detailed insights into the origins of molecular activity, theoretical calculations can be used to design new molecules with specific properties. This article describes two types of calculations that show special promise as design tools, the thermodynamic cycle-perturbation method and the Brownian reactive dynamics method. These methods can be applied to calculate equilibrium and rate constants that describe many aspects of molecular recognition, stability, and reactivity.