Articles

Abrupt Climate Change and Extinction Events in Earth History

Science  20 May 1988:
Vol. 240, Issue 4855, pp. 996-1002
DOI: 10.1126/science.240.4855.996

Abstract

Slowly changing boundary conditions can sometimes cause discontinuous responses in climate models and result in relatively rapid transitions between different climate states. Such terrestrially induced abrupt climate transitions could have contributed to biotic crises in earth history. Ancillary events associated with transitions could disperse unstable climate behavior over a longer but still geologically brief interval and account for the stepwise nature of some extinction events. There is a growing body of theoretical and empirical support for the concept of abrupt climate change, and a comparison of paleoclimate data with the Phanerozoic extinction record indicates that climate and biotic transitions often coincide. However, more stratigraphic information is needed to precisely assess phase relations between the two types of transitions. The climate-life comparison also suggests that, if climate change is significantly contributing to biotic turnover, ecosystems may be more sensitive to forcing during the early stages of evolution from an ice-free to a glaciated state. Our analysis suggests that a terrestrially induced climate instability is a viable mechanism for causing rapid environmental change and biotic turnover in earth history, but the relation is not so strong that other sources of variance can be excluded.