Ryanodine receptor of skeletal muscle is a gap junction-type channel

See allHide authors and affiliations

Science  07 Oct 1988:
Vol. 242, Issue 4875, pp. 99-102
DOI: 10.1126/science.2459777


In the sarcoplasmic reticulum membrane of skeletal muscle, the ryanodine receptor forms an aqueous pore identified as the calcium-release pathway that operates during excitation-contraction coupling. The purified ryanodine receptor channel has now been shown to have four properties usually associated with gap junction channels: (i) a large nonspecific voltage-dependent conductance consisting of several open states; (ii) an inhibition of open probability by low pH; (iii) an inhibition of open probability by calcium; and (iv) a sensitivity to blockade by heptanol and octanol but not other alcohols. This functional homology may provide an insight into the mechanism of how muscle cells transduce depolarization into an intracellular release of calcium.