Abstract

Current vaccine development strategies for malaria depend on widespread immunological responsiveness to candidate antigens such as the zygote surface antigens and the sporozoite coat protein, the circumsporozoite (CS) protein. Since immunological responsiveness is controlled mainly by genes mapping within the major histocompatibility complex (MHC), the humoral immune response to the zygote surface antigens and the cytotoxic T lymphocyte (CTL) response to the CS protein were examined in MHC-disparate congenic mouse strains. Only two of six strains responded to the 230-kilodalton zygote surface antigen and another two strains responded to the 48/45-kilodalton surface antigen. From two mouse strains, expressing between them five different class I MHC molecules, there was recognition of only a single CTL epitope from the CS protein, which was from a polymorphic segment of the molecule. The restricted CTL response to this protein parallels the restricted antibody response to this protein observed in humans and mice. These findings suggest that subunit malaria vaccines now being developed may be ineffective.