Reports

The effect of histone gene deletions on chromatin structure in Saccharomyces cerevisiae

Science  04 Nov 1988:
Vol. 242, Issue 4879, pp. 759-761
DOI: 10.1126/science.2847314

Abstract

As a way of studying nucleosome assembly and maintenance in Saccharomyces cerevisiae, mutants bearing deletions or duplications of the genes encoding histones H2A and H2B were analyzed. Previous genetic analysis had shown that only one of these mutants exhibited dramatic and pleiotropic phenotypes. This mutant was also the only one that contained disrupted chromatin, suggesting that the original phenotypes were attributable to alterations in chromosome structure. The chromatin disruption in the mutant, however, did not extend over the entire genome, but rather was localized to specific regions. Thus, while the arrangement of nucleosomes over the HIS4 and GAL1 genes, the telomeres, and the long terminal repeats (delta sequences) of Ty retrotransposons appeared essentially normal, nucleosomes over the CYH2 and UBI4 genes and the centromere of chromosome III were dramatically disrupted. The observation that the mutant exhibited localized chromatin disruptions implies that the assembly or maintenance of nucleosomes differs over different parts of the yeast genome.

Related Content