Research Articles

Artificial Airglow Excited by High-Power Radio Waves

See allHide authors and affiliations

Science  18 Nov 1988:
Vol. 242, Issue 4881, pp. 1022-1027
DOI: 10.1126/science.242.4881.1022


High-power electromagnetic waves beamed into the ionosphere from ground-based transmitters illuminate the night sky with enhanced airglow. The recent development of a new intensified, charge coupled-device imager made it possible to record optical emissions during ionospheric heating. Clouds of enhanced airglow are associated with large-scale plasma density cavities that are generated by the heater beam. Trapping and focusing of electromagnetic waves in these cavities produces accelerated electrons that collisionally excite oxygen atoms, which emit light at visible wavelengths. Convection of plasma across magnetic field lines is the primary source for horizontal motion of the cavities and the airglow enhancements. During ionospheric heating experiments, quasi-cyclic formation, convection, dissipation and reappearance of the cavites comprise a major source of long-term variability in plasma densities during ionospheric heating experiments.