Research Articles

Golf: an olfactory neuron specific-G protein involved in odorant signal transduction

+ See all authors and affiliations

Science  19 May 1989:
Vol. 244, Issue 4906, pp. 790-795
DOI: 10.1126/science.2499043

Abstract

Biochemical and electrophysiological studies suggest that odorants induce responses in olfactory sensory neurons via an adenylate cyclase cascade mediated by a G protein. An olfactory-specific guanosine triphosphate (GTP)-binding protein alpha subunit has now been characterized and evidence is presented suggesting that this G protein, termed Golf, mediates olfaction. Messenger RNA that encodes Golf alpha is expressed in olfactory neuroephithelium but not in six other tissues tested. Moreover, within the olfactory epithelium, Golf alpha appears to be expressed only by the sensory neurons. Specific antisera were used to localize Golf alpha protein to the sensory apparatus of the receptor neurons. Golf alpha shares extensive amino acid identity (88 percent) with the stimulatory G protein, Gs alpha. The expression of Golf alpha in S49 cyc- kin- cells, a line deficient in endogenous stimulatory G proteins, demonstrates its capacity to stimulate adenylate cyclase in a heterologous system.

Related Content