Reports

Domain separation in the activation of glycogen phosphorylase a

See allHide authors and affiliations

Science  04 Aug 1989:
Vol. 245, Issue 4917, pp. 528-532
DOI: 10.1126/science.2756432

Abstract

The crystal structure of glycogen phosphorylase a complexed with its substrates, orthophosphate and maltopentaose, has been determined and refined at a resolution of 2.8 angstroms. With oligosaccaride bound at the glycogen storage site, the phosphate ion binds at the catalytic site and causes the regulatory and catalytic domains to separate with the loss of stabilizing interactions between them. Homotropic cooperativity between the active sites of the allosteric dimer results from rearrangements in isologous contacts between symmetry-related helices in the subunit interface. The conformational changes in the core of the interface are correlated with those observed on covalent activation by phosphorylation at Ser14 (phosphorylase b----a).