Reports

Light-evoked changes in the interphotoreceptor matrix

Science  29 Jun 1990:
Vol. 248, Issue 4963, pp. 1633-1636
DOI: 10.1126/science.2194288

Abstract

The normal function of vertebrate photoreceptor cells depends on multiple interactions and transfer of substances between the photoreceptors and the retinal pigment epithelium (RPE), but the mechanisms of these interactions are poorly understood. Many are thought to be mediated by the interphotoreceptor matrix (IPM), a complex extracellular matrix that surrounds the photoreceptors and lies between them and the RPE. Histochemical, immunocytochemical, and lectin probes for several IPM constituents revealed that components of the IPM in the rat undergo a major shift in distribution or molecular conformation after the transition between light and dark. In the light, various IPM constituents concentrated in bands at the apical and basal regions of the outer segment zone; in the dark, they distributed much more uniformly throughout the zone. The change in IPM distribution was triggered by the light-dark transition; it was not a circadian event, and it was not driven by a systemic factor. The light-evoked change in IPM distribution may facilitate the transfer of substances between the photoreceptors and the RPE.

Related Content