Transient Particle Acceleration Associated with Solar Flares

Science  12 Oct 1990:
Vol. 250, Issue 4978, pp. 229-236
DOI: 10.1126/science.250.4978.229


Understanding how individual charged particles can be accelerated to extreme energies (1020 electron volts), remains a foremost problem in astrophysics. Within our solar system, the active sun is capable of producing, on a short time scale, ions with energies higher than 25 gigaelectron volts. Satellite and ground-based observation over the past 30 years have greatly increased our knowledge of the properties of transient bursts of energetic particles emitted from the sun in association with solar flares, but a real understanding of the solar flare particle acceleration process requires greatly refined experimental data. On the practical side, it is also imperative that this problem be solved if man is to venture, for long periods of time, beyond the protective umbrella of Earth's magnetic field, which excludes much of the biologically damaging solar energetic particles. It is only through an understanding of the basic acceleration problem that we can expect to be able to predict the occurrence of a solar flare with lethal solar radiations. For our knowledge of these effects to advance, a new space mission dedicated to studying the high-energy aspects of solar flares at high spatial and energy resolution will be required.