Reports

Spiral calcium wave propagation and annihilation in Xenopus laevis oocytes

Science  05 Apr 1991:
Vol. 252, Issue 5002, pp. 123-126
DOI: 10.1126/science.2011747

Abstract

Intracellular calcium (Ca2+) is a ubiquitous second messenger. Information is encoded in the magnitude, frequency, and spatial organization of changes in the concentration of cytosolic free Ca2+. Regenerative spiral waves of release of free Ca2+ were observed by confocal microscopy in Xenopus laevis oocytes expressing muscarinic acetylcholine receptor subtypes. This pattern of Ca2+ activity is characteristic of an intracellular milieu that behaves as a regenerative excitable medium. The minimal critical radius for propagation of focal Ca2+ waves (10.4 micrometers) and the effective diffusion constant for the excitation signal (2.3 x 10(-6) square centimeters per second) were estimated from measurements of velocity and curvature of circular wavefronts expanding from foci. By modeling Ca2+ release with cellular automata, the absolute refractory period for Ca2+ stores (4.7 seconds) was determined. Other phenomena expected of an excitable medium, such as wave propagation of undiminished amplitude and annihilation of colliding wavefronts, were observed.

Related Content