The three-dimensional crystal structure of the copper-containing nitrite reductase (NIR) from Achromobacter cycloclastes has been determined to 2.3 angstrom (A) resolution by isomorphous replacement. The monomer has two Greek key beta-barrel domains similar to that of plastocyanin and contains two copper sites. The enzyme is a trimer both in the crystal and in solution. The two copper atoms in the monomer comprise one type I copper site (Cu-I; two His, one Cys, and one Met ligands) and one putative type II copper site (Cu-II; three His and one solvent ligands). Although ligated by adjacent amino acids Cu-I and Cu-II are approximately 12.5 A apart. Cu-II is bound with nearly perfect tetrahedral geometry by residues not within a single monomer, but from each of two monomers of the trimer. The Cu-II site is at the bottom of a 12 A deep solvent channel and is the site to which the substrate (NO2-) binds, as evidenced by difference density maps of substrate-soaked and native crystals.