Uranium Stabilization of C28: A Tetravalent Fullerene

See allHide authors and affiliations

Science  18 Sep 1992:
Vol. 257, Issue 5077, pp. 1661-1664
DOI: 10.1126/science.257.5077.1661


Laser vaporization experiments with graphite in a supersonic cluster beam apparatus indicate that the smallest fullerene to form in substantial abundance is C28. Although ab initio quantum chemical calculations predict that this cluster will favor a tetrahedral cage structure, it is electronically open shell. Further calculations reveal that C28 in this structure should behave as a sort of hollow superatom with an effective valence of 4. This tetravalence should be exhibited toward chemical bonding both on the outside and on the inside of the cage. Thus, stable closed-shell derivatives of C28 with large highest occupied molecular orbital—lowest unoccupied molecular orbital gaps should be attainable either by reacting at the four tetrahedral vertices on the outside of the C28 cage to make, for example, C28H4, or by trapping a tetravalent atom inside the cage to make endothedral fullerenes such as Ti@C28. An example of this second, inside route to C28 stabilization is reported here: the laser and carbon-arc production of U@C28.