Reports

Altered fluid transport across airway epithelium in cystic fibrosis

See allHide authors and affiliations

Science  15 Oct 1993:
Vol. 262, Issue 5132, pp. 424-427
DOI: 10.1126/science.8211164

Abstract

In cystic fibrosis (CF), absence or dysfunction of a phosphorylation-regulated chloride channel [CF transmembrane conductance regulator (CFTR)] leads to the loss or reduction of chloride secretion into the airways. Active sodium absorption is also increased in CF, and both of these ion transport changes could alter fluid transport across the airways. Under baseline conditions, cultured human airway epithelia from normal individuals absorbed fluid, and this absorption was increased in epithelia from patients with CF. In normal and CF epithelial cultures fluid absorption was inhibited by amiloride. Adenosine 3',5'-monophosphate stimulated fluid secretion in normal epithelial cultures but not in cultures from individuals with CF. In contrast, fluid secretion induced by nucleotide triphosphates (uridine triphosphate or adenosine triphosphate) was unaltered in cultures of epithelia from patients with CF, suggesting an approach to the treatment of CF.