Magnetic field effects on B12 ethanolamine ammonia lyase: evidence for a radical mechanism

See allHide authors and affiliations

Science  18 Feb 1994:
Vol. 263, Issue 5149, pp. 958-960
DOI: 10.1126/science.8310292


A change in radical pair recombination rates is one of the few mechanisms by which a magnetic field can interact with a biological system. The kinetic parameter Vmax/Km (where Km is the Michaelis constant) for the coenzyme B12-dependent enzyme ethanolamine ammonia lyase was decreased 25 percent by a static magnetic field near 0.1 tesla (1000 gauss) with unlabeled ethanolamine and decreased 60 percent near 0.15 tesla with perdeuterated ethanolamine. This effect is likely caused by a magnetic field-induced change in intersystem crossing rates between the singlet and triplet spin states in the [cob(II)alamin:5'-deoxyadenosyl radical] spin-correlated radical pair.