Reports

Soluble beta-amyloid induction of Alzheimer's phenotype for human fibroblast K+ channels

See allHide authors and affiliations

Science  08 Apr 1994:
Vol. 264, Issue 5156, pp. 276-279
DOI: 10.1126/science.8146663

Abstract

Although beta-amyloid is the main constituent of neurite plaques and may play a role in the pathophysiology of Alzheimer's disease, mechanisms by which soluble beta-amyloid might produce early symptoms such as memory loss before diffuse plaque deposition have not been implicated. Treatment of fibroblasts with beta-amyloid (10 nM) induced the same potassium channel dysfunction previously shown to occur specifically in fibroblasts from patients with Alzheimer's disease--namely, the absence of a 113-picosiemen potassium channel. A tetraethylammonium-induced increase of intracellular concentrations of calcium, [Ca2+]i, a response that depends on functional 113-picosiemen potassium channels, was also eliminated or markedly reduced by 10 nM beta-amyloid. Increased [Ca2+]i induced by high concentrations of extracellular potassium and 166-picosiemen potassium channels were unaffected by 10 nM beta-amyloid. In Alzheimer's disease, then, beta-amyloid might alter potassium channels and thus impair neuronal function to produce symptoms such as memory loss by a means other than plaque formation.