Reports

A Formation Mechanism for Catalytically Grown Helix-Shaped Graphite Nanotubes

Science  29 Jul 1994:
Vol. 265, Issue 5172, pp. 635-639
DOI: 10.1126/science.265.5172.635

Abstract

The concept of a spatial-velocity hodograph is introduced to describe quantitatively the extrusion of a carbon tubule from a catalytic particle. The conditions under which a continuous tubular surface can be generated are discussed in terms of this hodograph, the shape of which determines the geometry of the initial nanotube. The model is consistent with all observed tubular shapes and explains why the formation process induces stresses that may lead to "spontaneous" plastic deformation of the tubule. This result is due to the violation of the continuity condition, that is, to the mismatch between the extrusion velocity by the catalytic particle, required to generate a continuous tubular surface, and the rate of carbon deposition.