Reports

Stern-volmer in reverse: 2:1 stoichiometry of the cytochrome c-cytochrome c peroxidase electron-transfer complex

+ See all authors and affiliations

Science  16 Sep 1994:
Vol. 265, Issue 5179, pp. 1693-1696
DOI: 10.1126/science.8085152

Abstract

A reverse protocol for measurements of molecular binding and reactivity by excited-state quenching has been developed in which the quencher, held at a fixed concentration, is titrated by a photoexcitable probe molecule whose decay is monitored. The binding stoichiometries, affinities, and reactivities of the electron-transfer complexes between cytochrome c (Cc) and cytochrome c peroxidase (CcP) were determined over a wide range of ionic strengths (4.5 to 118 millimolar) by the study of photoinduced electron-transfer quenching of the triplet excited state of zinc-substituted Cc (ZnCc) by Fe3+CcP. The 2:1 stoichiometry seen for the binding of Cc to CcP at low ionic strength persists at the physiologically relevant ionic strengths and likely has functional significance. Analysis of the stoichiometric binding and rate constants confirms that one surface domain of CcP binds Cc with a high affinity but with poor electron-transfer quenching of triplet-state ZnCc, whereas a second binds weakly but with a high rate of electron-transfer quenching.