Reports

Cooperative organization of inorganic-surfactant and biomimetic assemblies

See allHide authors and affiliations

Science  24 Feb 1995:
Vol. 267, Issue 5201, pp. 1138-1143
DOI: 10.1126/science.7855591

Abstract

A model that makes use of the cooperative organization of inorganic and organic molecular species into three dimensionally structured arrays is generalized for the synthesis of nanocomposite materials. In this model, the properties and structure of a system are determined by dynamic interplay among ion-pair inorganic and organic species, so that different phases can be readily obtained through small variations of controllable synthesis parameters, including mixture composition and temperature. Nucleation, growth, and phase transitions may be directed by the charge density, coordination, and steric requirements of the inorganic and organic species at the interface and not necessarily by a preformed structure. A specific example is presented in which organic molecules in the presence of multiply charged silicate oligomers self-assemble into silicatropic liquid crystals. The organization of these silicate-surfactant mesophases is investigated with and without interfacial silicate condensation to separate the effects of self-assembly from the kinetics of silicate polymerization.