A process has been developed for the in situ formation of the mineral phase of bone. Inorganic calcium and phosphate sources are combined to form a paste that is surgically implanted by injection. Under physiological conditions, the material hardens in minutes concurrent with the formation of dahllite. After 12 hours, dahllite formation was nearly complete, and an ultimate compressive strength of 55 megapascals was achieved. The composition and crystal morphology of the dahllite formed are similar to those of bone. Animal studies provide evidence that the material is remodeled in vivo. A novel approach to skeletal repair is being tested in human trials for various applications; in one of the trials the new biomaterial is being percutaneously placed into acute fractures. After hardening, it serves as internal fixation to maintain proper alignment while healing occurs.