Design and Application of Electron-Transporting Organic Materials

Science  31 Mar 1995:
Vol. 267, Issue 5206, pp. 1969-1972
DOI: 10.1126/science.267.5206.1969


Operating lifetime is the main problem that complicates the use of polymeric light-emitting diodes (LEDs). A class of electron transport (ET) polymers [poly(aryl acrylate) and poly(aryl ether)s] is reported in which moieties with high electron affinities are covalently attached to stable polymer backbones. Devices based on poly(p-phenylenevinylene) (PPV) prepared with these materials exhibited a 30-fold improvement in stability and, in one case, dramatically lower (10 volts versus about 30 volts) operating voltage relative to those having conventional ET layers. The current-carrying capacity of indium tin oxide-PPV-polymeric ET layer-aluminum LEDs was also increased by a factor of 30. These improvements lead to an enhancement in power efficiency of nearly an order of magnitude. Choosing polymers with high glass transition temperatures increases device lifetime.