Switching recognition of two tRNA synthetases with an amino acid swap in a designed peptide

See allHide authors and affiliations

Science  31 Mar 1995:
Vol. 267, Issue 5206, pp. 1994-1996
DOI: 10.1126/science.7701322


The genetic code is based on specific interactions between transfer RNA (tRNA) synthetases and their cognate tRNAs. The anticodons for methionine and isoleucine tRNAs differ by a single nucleotide, and changing this nucleotide in an isoleucine tRNA is sufficient to change aminoacylation specificity to methionine. Results of combinatorial mutagenesis of an anticodon-binding-helix loop peptide were used to design a hybrid sequence composed of amino acid residues from methionyl- and isoleucyl-tRNA synthetases. When the hybrid sequence was transplanted into isoleucyl-tRNA synthetase, active enzyme was generated in vivo and in vitro. The transplanted peptide did not confer function to methionyl-tRNA synthetase, but the substitution of a single amino acid within the transplanted peptide conferred methionylation and prevented isoleucylation. Thus, the swap of a single amino acid in the transplanted peptide switches specificity between anticodons that differ by one nucleotide.