You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Rare crystal phases that expand in one or more dimensions when hydrostatically compressed are identified and shown to have negative Poisson's ratios. Some of these crystals (i) decrease volume and expand in two dimensions when stretched in a particular direction and (ii) increase surface area when hydrostatically compressed. Possible mechanisms for achieving such negative linear and area compressibilities are described for single crystals and composites, and sensor applications are proposed. Materials with these properties may be used to fabricate porous solids that either expand in all directions when hydrostatically compressed with a penetrating fluid or behave as if they are incompressible.
↵* To whom correspondence should be addressed. E-mail: ray.baughman{at}alliedsignal.com