Report

Emergent Properties of Networks of Biological Signaling Pathways

Science  15 Jan 1999:
Vol. 283, Issue 5400, pp. 381-387
DOI: 10.1126/science.283.5400.381

You are currently viewing the abstract.

View Full Text
As a service to the community, AAAS/Science has made this article free with registration.

Abstract

Many distinct signaling pathways allow the cell to receive, process, and respond to information. Often, components of different pathways interact, resulting in signaling networks. Biochemical signaling networks were constructed with experimentally obtained constants and analyzed by computational methods to understand their role in complex biological processes. These networks exhibit emergent properties such as integration of signals across multiple time scales, generation of distinct outputs depending on input strength and duration, and self-sustaining feedback loops. Feedback can result in bistable behavior with discrete steady-state activities, well-defined input thresholds for transition between states and prolonged signal output, and signal modulation in response to transient stimuli. These properties of signaling networks raise the possibility that information for “learned behavior” of biological systems may be stored within intracellular biochemical reactions that comprise signaling pathways.

View Full Text

Cited By...