You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive human disease associated with multiple deletions of skeletal muscle mitochondrial DNA (mtDNA), which have been ascribed to a defect in communication between the nuclear and mitochondrial genomes. Examination of 12 MNGIE probands revealed homozygous or compound-heterozygous mutations in the gene specifying thymidine phosphorylase (TP), located on chromosome 22q13.32-qter. TP activity in leukocytes from MNGIE patients was less than 5 percent of controls, indicating that loss-of-function mutations in TP cause the disease. The pathogenic mechanism may be related to aberrant thymidine metabolism, leading to impaired replication or maintenance of mtDNA, or both.
↵* To whom correspondence should be addressed. E-mail: mh29{at}columbia.edu