You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
A formation process for semiconductor quantum dots based on a surface instability induced by ion sputtering under normal incidence is presented. Crystalline dots 35 nanometers in diameter and arranged in a regular hexagonal lattice were produced on gallium antimonide surfaces. The formation mechanism relies on a natural self-organization mechanism that occurs during the erosion of surfaces, which is based on the interplay between roughening induced by ion sputtering and smoothing due to surface diffusion.
↵* To whom correspondence should be addressed. E-mail: facsko{at}iht-ii.rwth-aachen.de