You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
The frequent warnings that global climate change will allow falciparum malaria to spread into northern latitudes, including Europe and large parts of the United States, are based on biological transmission models driven principally by temperature. These models were assessed for their value in predicting present, and therefore future, malaria distribution. In an alternative statistical approach, the recorded present-day global distribution offalciparum malaria was used to establish the current multivariate climatic constraints. These results were applied to future climate scenarios to predict future distributions, which showed remarkably few changes, even under the most extreme scenarios.
↵* To whom correspondence should be addressed. E-mail: david.rogers{at}zoology.ox.ac.uk