Report

Förster Energy Transfer in an Optical Microcavity

Science  27 Oct 2000:
Vol. 290, Issue 5492, pp. 785-788
DOI: 10.1126/science.290.5492.785

You are currently viewing the abstract.

View Full Text
As a service to the community, AAAS/Science has made this article free with registration.

Abstract

By studying the transfer of excitation energy between dye molecules confined within an optical microcavity, we demonstrate experimentally that Förster energy transfer is influenced by the local photonic mode density. Locating donor and acceptor molecules at well-defined positions allows the transfer rate to be determined as a function of both mutual separation and cavity length. The results show that the Förster transfer rate depends linearly on the donor emission rate and hence photonic mode density, providing the potential to control energy transfer by modification of the optical environment.

  • * To whom correspondence should be addressed. E-mail: pandrew{at}exeter.ac.uk

View Full Text