Research Article

G-Protein Signaling Through Tubby Proteins

See allHide authors and affiliations

Science  15 Jun 2001:
Vol. 292, Issue 5524, pp. 2041-2050
DOI: 10.1126/science.1061233

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Abstract

Dysfunction of the tubby protein results in maturity-onset obesity in mice. Tubby has been implicated as a transcription regulator, but details of the molecular mechanism underlying its function remain unclear. Here we show that tubby functions in signal transduction from heterotrimeric GTP-binding protein (G protein)–coupled receptors. Tubby localizes to the plasma membrane by binding phosphatidylinositol 4,5-bisphosphate through its carboxyl terminal “tubby domain.” X-ray crystallography reveals the atomic-level basis of this interaction and implicates tubby domains as phosphorylated-phosphatidyl- inositol binding factors. Receptor-mediated activation of G protein αq(Gαq) releases tubby from the plasma membrane through the action of phospholipase C–β, triggering translocation of tubby to the cell nucleus. The localization of tubby-like protein 3 (TULP3) is similarly regulated. These data suggest that tubby proteins function as membrane-bound transcription regulators that translocate to the nucleus in response to phosphoinositide hydrolysis, providing a direct link between G-protein signaling and the regulation of gene expression.

  • * To whom correspondence should be addressed at the Structural Biology Program, Mount Sinai School of Medicine, Room 16-20, 1425 Madison Avenue, New York, NY 10029, USA. E-mail: shapiro{at}inka.mssm.edu

View Full Text