Report

Direct Measurement of the Preferred Sense of NO Rotation After Collision with Argon

+ See all authors and affiliations

Science  14 Sep 2001:
Vol. 293, Issue 5537, pp. 2063-2066
DOI: 10.1126/science.1062754

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution


Abstract

The preferred sense of product molecule rotation (clockwise or counterclockwise) in a bimolecular collision system has been measured. Rotationally inelastic collisions of nitric oxide (NO) molecules with Ar atoms were studied by combining crossed molecular beams, circularly polarized resonant multiphoton ionization probing, and velocity-mapped ion imaging detection. The observed sense of NO product rotation varies with deflection angle and is a strong function of the NO final rotational state. The largest preferences for sense of rotation are observed at the highest kinematically allowed product rotational states; for lower rotational states, the variation with deflection angle becomes oscillatory. Quantum calculations on the most recently reported NO-Ar potential give good agreement with the observed oscillation patterns in the sense of rotation.

View Full Text

Related Content