You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Colony queen number, a major feature of social organization in fire ants, is associated with worker genotypes at the gene Gp-9. We sequenced Gp-9 and found that it encodes a pheromone-binding protein, a crucial molecular component in chemical recognition of conspecifics. This suggests that differences in worker Gp-9 genotypes between social forms may cause differences in workers' abilities to recognize queens and regulate their numbers. Analyses of sequence evolution indicate that regulation of social organization by Gp-9 is conserved in South American fire ant species exhibiting social polymorphism and suggest that positive selection has driven the divergence between the alleles associated with alternate social organizations. This study demonstrates that single genes of major effect can underlie the expression of complex behaviors important in social evolution.
↵* To whom correspondence should be addressed. E-mail: mkrieger{at}arches.uga.edu