Report

Catalytic Reduction of Dinitrogen to Ammonia at a Single Molybdenum Center

Science  04 Jul 2003:
Vol. 301, Issue 5629, pp. 76-78
DOI: 10.1126/science.1085326

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution


Abstract

Dinitrogen (N2) was reduced to ammonia at room temperature and 1 atmosphere with molybdenum catalysts that contain tetradentate [HIPTN3N]3– triamidoamine ligands {such as [HIPTN3N]Mo(N2), where [HIPTN3N]3– is [{3,5-(2,4,6-i-Pr3C6H2)2C6H3NCH2CH2}3N]3–} in heptane. Slow addition of the proton source [{2,6-lutidinium}{BAr′4}, where Ar′ is 3,5-(CF3)2C6H3]and reductant (decamethyl chromocene) was critical for achieving high efficiency (∼66% in four turnovers). Numerous x-ray studies, along with isolation and characterization of six proposed intermediates in the catalytic reaction under noncatalytic conditions, suggest that N2 was reduced at a sterically protected, single molybdenum center that cycled from Mo(III) through Mo(VI) states.

View Full Text

Related Content