An Engineered Pathway for the Formation of Protein Disulfide Bonds

Science  20 Feb 2004:
Vol. 303, Issue 5661, pp. 1185-1189
DOI: 10.1126/science.1092612

You are currently viewing the abstract.

View Full Text
As a service to the community, AAAS/Science has made this article free with registration.


We have engineered a pathway for the formation of disulfide bonds. By imposing evolutionary pressure, we isolated mutations that changed thioredoxin, which is a monomeric disulfide reductase, into a [2Fe-2S] bridged dimer capable of catalyzing O2-dependent sulfhydryl oxidation in vitro. Expression of the mutant protein in Escherichia coli with oxidizing cytoplasm and secretion via the Tat pathway restored disulfide bond formation in strains that lacked the complete periplasmic oxidative machinery (DsbA and DsbB). The evolution of [2Fe-2S] thioredoxin illustrates how mutations within an existing scaffold can add a cofactor and markedly change protein function.

View Full Text

Cited By...