You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Using high-resolution imaging at negative spherical aberration of the objective lens in an aberration-corrected transmission electron microscope, we measure the concentration of oxygen in Σ3{111} twin boundaries in BaTiO3 thin films at atomic resolution. On average, 68% of the boundary oxygen sites are occupied, and the others are left vacant. The modified Ti2O9 group unit thus formed reduces the grain boundary energy and provides a way of accommodating oxygen vacancies occurring in oxygen-deficient material by the formation of a nanotwin lamellae structure. The atomically resolved measurement technique offers the potential for studies on oxide materials in which the electronic properties sensitively depend on the local oxygen content.