You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Malaria parasites must complete a complex developmental cycle in an Anopheles mosquito vector before transmission to a vertebrate host. Sexual development of the parasite in the midgut is initiated in the lumen immediately after the mosquito ingests infected blood, and the resulting ookinetes must traverse the surrounding epithelial layer before transforming into oocysts. The innate immune system of the mosquito is activated during midgut invasion, but to date, no evidence has been published identifying mosquito immune genes that affect parasite development. Here, we show by gene silencing that an Anopheles gambiae leucine rich-repeat protein acts as an antagonist and two C-type lectines act as protective agonists on the development of Plasmodium ookinetes to oocysts.